Dynamics of nanoparticle adhesion.

نویسندگان

  • Jan-Michael Y Carrillo
  • Andrey V Dobrynin
چکیده

We performed molecular dynamics simulations and theoretical analysis of nanoparticle pulling off from adhesive substrates. Our theoretical model of nanoparticle detachment is based on the Kramers' solution of the stochastic barrier crossing in effective one-dimensional potential well. The activation energy, ΔE, for nanoparticle detachment first decreases linearly with increasing the magnitude of the applied force, f, then it follows a power law ΔE [proportionality] (f* - f)(3/2) as magnitude of the pulling force f approaches a critical detachment force value, f*. These two different regimes in activation energy dependence on magnitude of the applied force are confirmed by analyzing nanoparticle detachment in effective one-dimensional potential obtained by weighted histogram analysis method. Simulations show that detachment of nanoparticle proceeds through neck formation such that magnitude of the activation energy is determined by balancing surface energy of the neck connecting particle to a substrate with elastic energy of nanoparticle deformation. In this regime the activation energy at zero applied force, ΔE(0), for nanoparticle with radius, R(p), shear modulus, G, surface energy, γ(p), and work of adhesion, W, is a universal function of the dimensionless parameter δ [proportionality] γ(p)W(-2/3)(GR(p))(-1/3). Simulation data are described by a scaling function ΔE(0) [proportionality] γ(p) (5/2)R(p)(1/2)G(-3/2)δ(-3.75). Molecular dynamics simulations of nanoparticle detachment show that the Kramers' approach fails in the vicinity of the critical detachment force f* where activation energy barrier becomes smaller than the thermal energy k(B)T. In the interval of the pulling forces f > f* nanoparticle detachment becomes a deterministic process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of Multivalent Nanoparticle Adhesion via Specific Molecular Interactions.

The targeted delivery of nanoparticle carriers holds tremendous potential to transform the detection and treatment of diseases. A major attribute of nanoparticles is the ability to form multiple bonds with target cells, which greatly improves the adhesion strength. However, the multivalent binding of nanoparticles is still poorly understood, particularly from a dynamic perspective. In previous ...

متن کامل

Investigation into the Effects of Nanoparticle Size and Channel Depth on the Thermophysical Properties of Water Nanofluids in the Nanochannel Using Molecular Dynamics Simulation

In this research, an in-house code which uses the molecular dynamics method to study the flow of different nanofluids in the copper nanochannel and computes the thermo-physicals properties has been developed. The flow of nanofluids has been studied from hydro-thermally viewpoint and temperature jump at the wall has been applied. Parametric study to consider the effect of different parametric su...

متن کامل

Adhesion Dynamics of Functional Nanoparticles for Targeted Drug Delivery

Adhesion of micro and nanoparticles onto cardiovascular walls is a critical process in applications such as targeted drug delivery, biomedical imaging, and cancer treatment. This paper intends to develop an understanding of the dynamic interaction between particle and vessel wall through computational modeling. The ligand-receptor binding dynamics is coupled with Immersed Finite Element Method ...

متن کامل

Diffusive Dynamicsof Binary Lennard-Jones Liquid in the Presence of Gold Nanoparticle: A Mode Coupling Theory Analysis

Molecular dynamics simulation has been performed to analyze the effect of the presence of gold nanoparticle on dynamics of Kob-Anderson binary Lennard-Jones (BLJ) mixture upon supercooling within the framework of the mode coupling theory of the dynamic glass transition. The presence of gold nanoparticle has a direct effect on the liquid structure and causes the peaks of the radial distribution ...

متن کامل

Modeling particle shape-dependent dynamics in nanomedicine.

One of the major challenges in nanomedicine is to improve nanoparticle cell selectivity and adhesion efficiency through designing functionalized nanoparticles of controlled sizes, shapes, and material compositions. Recent data on cylindrically shaped filomicelles are beginning to show that non-spherical particles remarkably improved the biological properties over spherical counterpart. Despite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 137 21  شماره 

صفحات  -

تاریخ انتشار 2012